RAMAKRISHNA MISSION VIDYAMANDIRA

(A Residential Autonomous College)

Belur Math, Howrah

B.A./B.Sc. 1st Semester (July – December 2010)

Mid-Semester Examination, September 2010

Date: 06.09.2010 Time: 11 am – 1 pm **Mathematics (Honours)**

Full Marks 50

Group - A

Ans	wer ar	y two:	2x5
1.	a)	Find $\sup A$ and $\inf A$ where $A = \left\{ \frac{n + (-1)^n}{n} : n \in \mathbb{N} \right\}$.	2
	b)	Let S and T be two non-empty bounded subsets of \mathbb{R} and $U = \{x + y : x \in S, y \in T\}$. Prove that $\sup U = \sup S + \sup T$.	3
2.	a)	State and prove well-ordering principle of N.	1+2
	b)	Prove that for all $n \in \mathbb{N}$, $(3+\sqrt{5})^n + (3-\sqrt{5})^n$ is an even integer.	2
3.	a)	Prove that arbitrary union of open sets in \mathbb{R} is an open set. Is the result true for arbitrary intersection? Justify.	2+1
	b)	Give an example of an infinite set $S \subseteq \mathbb{R}$ such that (i) S has no limit point, (ii) S has only one limit point.	2
		Group - B	
Ans	wer ar	y three questions:	3x5
			\$56JG 533
4.	a)	Let $f: X \to Y$ be an injective map and $A \subseteq X$. Prove that $A = f^{-1}(f(A))$.	3
	b)	Define a bijective map from \mathbb{Q} onto $\mathbb{Q} \cup \{\sqrt{2}\}$.	2
5.	a) b)	Find the total number of reflexive relations on a set containing n elements. Consider the relation ρ defined on \mathbb{Z} by " $a \rho b$ iff $[a-b] = 0$ $(a,b \in \mathbb{Z})$ ".	3
		Verify whether ρ is transitive.	2
6.	a)	Let ρ be an equivalence relation on a set S and $a,b \in S$. Prove that $[a] = [b]$ iff $a \rho b$.	3
	b)	Define an equivalence relation on $\{1, 2, 3\}$.	2
7.		K are two subgroups of a group G then show that HK is a subgroup of G iff $= KH$ where $HK = \{xy : x \in H, y \in K\}$ and KH has a similar definition.	5
8.	a) b)	Define $Z(G)$, the centre of a group G . Prove that $Z(G)$ is a subgroup of G . Prove that G is abelian if $G = Z(G)$.	1+3 1
		Group - C	
9.	Anes	ver any three:	3x5
).		A second	JAJ
	a)	Prove that $\frac{1}{(x+y+1)^4}$ is an integrating factor of the differential equation:	22
	b)	$(2xy - y^2 - y)dx + (2xy - x^2 - x)dy = 0$ and hence solve it. Find the general and singular solution of the non-linear differential equation:	5
	1000	$(px-y)(x-py) = 2p$ where $p = \frac{dy}{dx}$.	5
	c)	Solve: $(y^2 + 2x^2y)dx + (2x^3 - xy)dy = 0$.	5

	d) Solve: $y = 3px + 6p^2y^2$ where $p = \frac{dy}{dx}$.	75	
	e) Show that the general solution of the equation $\frac{dy}{dx} + Py = Q$ can be written in		
	the form $y = K(u-v) + v$, where K is a constant and u, v are two particular solutions of it.	5	
	<u>Group - D</u>		
Answer any two:			
10. If the position vectors of four points relative to the origin O are $-6\hat{i} + 3\hat{j} + 2\hat{k}$, $3\hat{i} - 2\hat{j} + 4\hat{k}$, $5\hat{i} + 7\hat{j} + 3\hat{k}$ and $-13\hat{i} + 17\hat{j} - \hat{k}$; show that the four			
101	points are coplanar.		
11.	1. Show by vector method that external bisector of any angle of a triangle divides the opposite side externally in the ratio of the lengths of two sides containing the angle.		
12.	i) Prove that $\vec{a} \times \vec{b} = [(\hat{i} \times \vec{a}) \cdot \vec{b}]\hat{i} + [(\hat{j} \times \vec{a}) \cdot \vec{b}]\hat{j} + [(\hat{k} \times \vec{a}) \cdot \vec{b}]\hat{k}$.	3	
	ii) Prove that $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ are coploanar if and only if \vec{a} , \vec{b} , \vec{c} are coplanar.	2	